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FINITE DEFLECTIONS OF A SIMPLY SUPPORTED
RIGID-PLASTIC ANNULAR PLATE LOADED DYNAMICALLY

NORMAN JONES

Division of Engineering, Brown University, Providence, Rhode Island

Abstract—A theoretical analysis is presented for the dynamic behavior of a simply supported rigid, perfectly
plastic annular plate subjected to a rectangular pressure pulse. It is shown that this theory, which considers the
simultaneous influence of membrane forces and bending moments, predicts final deformations which are con-
siderably smalier than those given by the corresponding bending theory even when maximum deflections only
of the order of the plate thickness are permitted. It is believed that this theoretical analysis could be developed
further in order to describe the behavior of plates having other support conditions and different dynamic loading
characteristics.

NOTATION
H plate thickness
I impulse per unit area of plate
r I/(uHpo)*
M, aoH?j4
M. .M, radial and circumferential bending moments per unit length
No aoH
N,,Ng radial and circumferential membrane forces per unit length
Q transverse shear force per unit length of plate
R outside radius of plate
R,.R, principal radii of curvature
T time at which plate reaches permanent position

a inner radius of annular plate
k(t), ko, k. uniform distributed pressure per unit area of undeformed plate

m,, mg dimensionless bending moments M,/M,, My/M,
n,, ng dimensionless membrane forces N,/Ny, No/N,

n defined by equation (19)

P —ksing

Po 6Mo/R?

q —kcos ¢

r radial coordinate of plate

t time

u displacement in direction r of undeformed plate
w transverse deflection perpendicular to undeformed plate
o, 1+,

O u+tr

1) defined by equation (21)

&, &g radial and circumferential strains

C ko/ kr

2} circumferential coordinate lying in plate

K,, Kg radial and circumferential curvatures

A uViR* /M H

u mass per unit area of plate

1 yield stress in simple tension

T duration of pulse

¢ slope of the mid-plane of a plate measured in a plane which passes through r = 0 and is perpendicular

to the plate surface
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{1 difference between the values of the considered quantity on either side of a travelling hinge

1. INTRODUCTION

THe behavior of rigid—plastic circular plates under the influence of static loads which pro-
duce infinitesimal deflections is fairly well established [1, 2, 3, etc.]. When finite deflections
are permitted, however, it is observed that plates can support external loads considerably
larger than those predicted by these theories. Onat and Haythornthwaite [4] indicated that
this increased load carrying capacity is due mainly to the important role which membrane
forces play in the finite deformation of plates.

1t is clear from a survey of the pertinent literature that most attention has been directed
towards the dynamic deformation of plates in which either membrane forces [5, 6, etc.]
or bending moments [7, 8,9, etc.] alone are believed to be important. Moreover, with the
exception of some numerical work [10], the analysis of an annular plate by Florence [11],
and some recent work [12], no investigations have been conducted into the interaction
effects between membrane forces and bending moments, although such interaction
influences considerably the static loading of plates [4] and the dynamic loading of
beams [13]. Florence [14] applied uniform distributed impulses to some simply supported
circular plates and observed that the appropriate rigid-plastic theory [8] overestimated
considerably the recorded deflections particularly for large impulses. Recently it has
been demonstrated {12] that a significant improvement in the theoretical predictions of
plates loaded impulsively can be achieved if the influence of membrane forces and bending
moments is retained in the theory.

Symonds [15] indicated that the permanent deformation of rigid-plastic beams
subjected to central force pulses having rectangular and triangular shapes differed about
+15% from an equivalent half sine wave pulse with the same maximum value and impulse.
Perzyna [16] developed further the theory of Hopkins and Prager [7], in which membrane
forces are disregarded, and showed that for a given impulse the character of the pressure~
time function had little influence on the final shape of a rigid-plastic circular plate.
Hodge [17] and Sankaranarayanan [18], on the other hand, found that the blast character-
istics had a profound effect upon the final deformation of cylindrical and spherical rigid-
plastic shells.

In practice, the blast load which acts on a plate or structure often persists for a short
period of time rather than behaving like a pure impulse as assumed in Ref, [12]. It is the
purpose of this article, therefore, to study the behavior of a rigid, perfectly plastic annular
plate when subjected to a rectangular pressure pulse such as the one shown in Fig. 1.

The limited interaction yield surface of Hodge [22], which retains all interaction
between force and force, and moment and moment but disregards any interaction between
forces and moments, will be used in the following analysis in order to simplify the various
equations and permit an analytical solution. The results of this analysis will be compared
with the corresponding values from the bending only theory so that they indicate the
importance of membrane forces and with those when { — o0 in order to examine and
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FiG. 1. Rectangular pressure pulse.

assess the difference between the permanent deflections corresponding to a pure impulse
and an equivalent rectangular pressure pulse.

2. EQUILIBRIUM EQUATIONS

It may be shown that the equilibrium equations for the finite deflections of a circular
plate subjected to axisymmetrical dynamic loads can be written in the form [12, 19]

(aONr)’ - a’0N0 - a,.(ng/R, + o,0eD + ﬂaraﬂw sin ¢ - .U“a“rﬁ cos ¢ =0 (1)
(2gQ) + 2, 04[ N,/R,+ Ng/Ry] + at, 099 + potget, W cos ¢ + pat, 04l sin ¢ = 0 )
(opM,) —opMy— 0,040 = 0 3)

provided the rotary inertia effect is disregarded, and
a, = 1+s¢,
g =r+u=r(l+g)
IR, = ¢'/(1+e)
1/R, = sin ¢/r.

The positive directions of the various quantities are indicated in Fig. 2.
If we limit our discussion to plates having small strains and deflections which are not
too large, then we may let ap=7r, a, =1, 1/R, = ¢, 1/Ry = sin ¢/r, and oy = cos ¢

which, using cos ¢ = 1, and sin ¢ = —w’, allow equations (1)}{3) to be recast as follows
rn,+n,—ng = —rkw'/No+ urww'/No+ urii/N, 4)
and
rmy; +2m, —my—A4ngw' /H = rk/M,— urw/M + uritw' /My (5)
where,
n,= N,/No, ng = No/No

mr=Mr/M0! m9=M0/M0
and r¢’'Q, rN,¢' and ¢'w’ have been disregarded.
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3. STRAINS AND CURVATURES
It may be shown for small strains [19] that
& =u+ww
ég = u/r
"cr = (1 + u/)w/l + "llwﬂ —_ u//wf _ullwl
and
ko = W'/r

4. YIELD CONDITION

(6)
Q)
(8)

It has been found that disregarding elastic effects when analyzing cantilever beams
loaded dynamically is a powerful simplification and a valid approximation, provided the
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external energy is at least three times larger than the strain energy absorbed by the beam
at the elastic limit [21]. Further, Frederick [5] and Boyd [6] investigated the deformation
of membranes made from work-hardening material and found that a simplified perfectly
plastic analysis provided a remarkably accurate model of the true behavior. Consequently
the plate shown in Fig. 2 is assumed for the purposes of this analysis to be made from a
rigid, perfectly plastic material.

The yield condition proposed by Hodge {22] and illustrated in Fig. 3 will be used in
this article since it simplifies considerably a previous analysis, the results of which agree
reasonably well with experimental values recorded on plates loaded impulsively [12].
This approximate yield surface is an “‘upper” bound to the Tresca yield condition for a
uniform shell [23], while a similar one 0-618 times as large provides a “lower” bound.

A A"

FiG. 3. Yield condition after Hodge [22].

5. FINITE DEFORMATION OF AN ANNULAR PLATE SUBJECTED
TO A RECTANGULAR PRESSURE PULSE
In this section an examination is made of the behavior of a rigid, perfectly plastic
annular plate subjected to the linearly distributed pressure pulse indicated in Fig. 4, the
time variation of which is illustrated in Fig. 1. It is convenient to divide the analysis into
two stages such that
(R-7)

(R—a)

k(t) = ko (10)

LINEAR INITIAL VELOCITY PROFILE

H
Vo , Vo
NN NNNN ARNRNY i
L a i
R

FiG. 4
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during the first stage when 0 < t < 1, while
k(t)y =0

throughout the final stage, for whicht <t < T.

5.1 Firststage0 <t<t

The pressure distribution represented by equation (10) suggests that the transverse
displacements might be of the form
(R-r)
= Wi(t)—— 11
W= WO (11)
where W,(t) is an unknown function of time and a < r < R
Now, since it appears reasonable to assume that the radial strain ¢, is zero, then it
may be shown, using equations (6) and (11), that
W3R —-r)
u= 2R—a)? (12)
for an annular plate simply supported around its outer edge with u = 0 whenr = R.
The strain and curvature rates given by equations (6)-(9), (11), and (12) satisfy the
normality requirements associated with the yield surface illustrated in Fig. 3 when

=1 0<n <1 (13)
and
my= —1, —-1<m<0 (14)

Substituting equations (13) and (14) into (5) and disregarding iiw’ when compared with

w gives
M, '
r2

2 r2m) = k()i + N 5
where k(t) is an external pressure, uw is an inertia term, and Nw'/r arises from membrane
forces which are introduced when finite defiections are permitted. It may be shown, when
a = 0 and the Nyw'/r term is disregarded and either k() or uw or k(t)— puw are retained,
that equation (15) yields the same results as quoted in Refs. [1, 8, 7], respectively. If k(t)
and Now'/r are retained and w = a = 0, then equation (15) predicts results similar to those
of Onat and Haythornthwaite [4] for deflections at r = 0 greater than H/2. The impulsive
loading case in Ref. [12] was analyzed using equation (15), with k() = O, while this article
is concerned with dynamic loading for which all three terms must be included.
If equations (10) and (11) are substituted into (15), then

AW ko(RrZ—rs)_/,th(er—r3)
HR—a) Mo(R—a) M,R—a)

a 2.7
v = 16
0r(r m, (16)

which, when integrated twice with respect to r, gives

pA{A a?\ (ko—pW)[Rr* Ra®> Ra® r* a® a*\ a
L TN PO PO Bl i Y] s A LY
" H(R—a)(r at r)+ MyR—a\ 6 2 '3 1273 &7 (17
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where the constants of integration have been evaluated from the conditions thatm, = Q = 0
atr = a.

Moreover, if the plate is simply supported around its outer edge, then m, = 0 at
r = R, and

W, +n’W, = —§' (18)
where
4po
2 = 19
" T UH( —a)(1+ 30) 1)
6M
Po =gz (20)
n*H
- 21
5= @y
and
—o)(1
5= 6{1_k0(1 o) ( +3¢x)} 22)
2po
The solution of equation (18) is
’ 5!
W, = ;z-cos nt—? (23)

where the constants of integration have been evaluated from the initial conditions
W, = W, =0whent =0.
At the end of the first stage equation (23) gives

’ 5/
W, = —cosnt——; (24)
n n
and
W = - sin nt (25)

52 Second staget <t < T
The plate is now unloaded so that k(t) = Ofora <r < Randt <t < T.
Let

w= Wit = (26)

where W,(¢) is an unknown function of time but must match equations (24) and (25) when
t=r1

If the radial strain is zero, then equations (12)(14) are again valid provided W, is
substituted for W,. Thus equation (5) can be rewritten

AW,r  uW,(Rr* —rd)
H(R—a) MyR—a)

3]
() = @7
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the solution of which is

(28)

a
— e — — — | =]
6 2 "% 3wty
where the constants of integration have been determined from the requirements that
m=0g=0atr=a
For an annular plate simply supported around the ocuter edge we have

Wy+n*W, = —6 (29)

uW, (Rr2 Ra* Ra® P & o

where n? and 6 are defined by equations (19) and (21).
The solution of equation (29) is

_ j6-9) & ©—-8) . . S
W, = { " cos nt +n_2 cos nt+ 2 sin nt sin nt—; 30)
when W, and W, are made continuous with the corresponding values at the end of the
first stage. .

The plate reaches its final position when W, = 0, or

b (6—d)sinnt
T= — {(6-5’) cos nt+5’} 31

and the permanent shape of the plate is

Wo 1 LA S A L r
N U U R R

It may be shown that equation (4) is always satisfied for thin plates with n, = 0 at
r=a

In order to ensure that m, remains positive at the outer edge of the plate, it is necessary
that

W) 1+a
i < p (33)
while, for small values of o, the requirement that m, > — 1 demands a more severe limitation
on the deflections. If one is interested in deflections, the magnitude of which would violate
the inequality (33), then it appears reasonable to consider the analysis outlined here as
valid up to the time ¢t = t; when m, = 0 at r = R while for t;, < t < T the plate could be
considered to behave as a membrane.
If the deflections of the plate are assumed infinitesimal, then n, = ny = 0 and an
analysis similar to the one presented gives equations (18) and (29) without the n*W, and
n?W, terms, respectively. The permanent shape of the plate for this case may be shown to be

—&'1? o r
x5 o
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Moreover, one can show using equation (16) that the static collapse load “k.” of an
annular plate is

_ 2po
T (1—a)(1+30) (33)

provided finite deflections are not permitted.
It is convenient, therefore, to define a load factor

which, using equations (22) and (35), becomes

(=1-% (36)

Recasting equations (32) and (34) gives

Wm 1 _ _ I_’ _ _r
_ﬁ_Z(I—a){\/l:cz+(l—g)2+25(1 C)cos(\/[(l a)(1+3a)]c):] 1}(1 R) 37

and

W ((—=1)(1430)? r
H= —*Tg—“( : _—R) G8)
where
I = ——I— (39)
~ (uHpo)t
and
1= k()T (40)

Finally, equations (37) and (38) reduce to the impulsive loading cases when { — oo, or

We 1 Al —a)(1+3a) r
ﬁ‘zu—a){\/[” 6 ]‘1}(17) “n

and
W A1+3a) r
H 24 (1 R) 42)
where -
5= BYoR 43)
M,H
and,
kot = uly

6. DISCUSSION

It is clear from the results plotted in Fig. 5, particularly when deflections of the order
of the plate thickness or greater are permitted, that membrane forces influence considerably
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the permanent deformation of a simply supported rigid, perfectly plastic annular plate
loaded dynamically with a rectangular pressure pulse. Furthermore, deflections predicted
for small values of { are significantly smaller than those for an equivalent impulse (i.e.,
kot = uVy) although for { = 8 the differences are about 109, and less than that for { > 8.

7. CONCLUSIONS

A theoretical analysis which retains the influence of bending moments and membrane

forces has been presented for a simply supported rigid-plastic annular plate loaded with
a rectangular pressure pulse. It can be shown that this theoretical analysis predicts final
deformations which are considerably smaller than those given by the bending only theory
even for maximum deflections of the order of the plate thickness.

It is thought that the theoretical analysis presented here could be developed further
in order to describe the behavior of plates having other support conditions and different
characters of loading. However, it is believed that some estimate of the influence of strain-
rate effects should be made since Wierzbicki [24] and Perrone [25] have shown that these
are important in the bending only case.
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AGCTpaKT—IPHUBOAUTCA TEOPETHYECKMI pacyeT NMHAMMYECKOro NnoBeaeHus CBOOOOHO onepToit, TBepaoi,
WAEATBLHO IUIACTHYECKOH , KONBLEBOR IIACTHHKH, TOABEPKEHHOM HMITY/ILCHBHOMY JaBJieHHH Ha IPAMOYIO~
nbHuke. IToka3zaHo, 4TO 3Ta TEOPHUA, YYUTBIBAOUIAS COBMECTHOE BIMAHUE MEMOpaHHbBIX YCHIIHI M H3rHO-
aloIUMX MOMEHTOB, IPHHUMAET BO BHUMEHUE KOHe4Hble Aedopmauuy. OHH ABISIOTCH COOTBETCBEHHO MEH-
bIWIMMHM NO CPABHEHHIO C JedopMalLMAMM ITOJNY4YEHbIMH U3 COOTBETCTBYIOLUEH Teopuu u3ruba XonkuHca
u Ilparepa, naxe koraa JOMyCKAIOTCA MaKCHMalbHbie H3rMOBI MOPAAKA TONWKHB W1acTUHKH. [Ipeamno-
JIATaeTCA, YTO TO TEOPETHYECKOE MCCIIENOBAHME MOXHA Pa3BHUTh Jajiblle ¢ LAJbI0 ONMUCAHHA MOBEACHHS
NJIACTHHOK C APYTUMH TPAaHHYHBIMH YCJIOBHSIMYU M Pa3HBIMH XapaKTEPHCTUKAMU AMHAMMYECKOH HArpY3KH.



